Exercise 1.1.4

Show that $|\mathbf{v}|$ is the distance of (v^1, v^2, v^3) from (0, 0, 0) by two applications of the Pythagorean theorem.

Solution

Figure 1: Arbitrary three-dimensional vector \mathbf{v} in \mathbb{R}^3 with components v^1 , v^2 , and v^3 .

Applying the Pythagorean theorem, h can be determined.

$$h^2 = (v^1)^2 + (v^2)^2 \tag{1}$$

Applying the Pythagorean theorem for the second time, r can be determined.

$$r^2 = h^2 + (v^3)^2$$

Substituting $|\mathbf{v}|$ for r and (1) for h^2 , we get

$$|\mathbf{v}|^2 = (v^1)^2 + (v^2)^2 + (v^3)^2$$
$$|\mathbf{v}| = \sqrt{(v^1)^2 + (v^2)^2 + (v^3)^2}$$

Therefore, $|\mathbf{v}|$ is the distance of (v^1, v^2, v^3) from (0, 0, 0).

www.stemjock.com