Exercise 1.1.4

Show that $|\mathbf{v}|$ is the distance of $\left(v^{1}, v^{2}, v^{3}\right)$ from $(0,0,0)$ by two applications of the Pythagorean theorem.

Solution

Figure 1: Arbitrary three-dimensional vector \mathbf{v} in \mathbb{R}^{3} with components v^{1}, v^{2}, and v^{3}.
Applying the Pythagorean theorem, h can be determined.

$$
\begin{equation*}
h^{2}=\left(v^{1}\right)^{2}+\left(v^{2}\right)^{2} \tag{1}
\end{equation*}
$$

Applying the Pythagorean theorem for the second time, r can be determined.

$$
r^{2}=h^{2}+\left(v^{3}\right)^{2}
$$

Substituting $|\mathbf{v}|$ for r and (1) for h^{2}, we get

$$
\begin{aligned}
|\mathbf{v}|^{2} & =\left(v^{1}\right)^{2}+\left(v^{2}\right)^{2}+\left(v^{3}\right)^{2} \\
|\mathbf{v}| & =\sqrt{\left(v^{1}\right)^{2}+\left(v^{2}\right)^{2}+\left(v^{3}\right)^{2}} .
\end{aligned}
$$

Therefore, $|\mathbf{v}|$ is the distance of $\left(v^{1}, v^{2}, v^{3}\right)$ from $(0,0,0)$.

